3n^3+8n^2+12n=0

Simple and best practice solution for 3n^3+8n^2+12n=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3n^3+8n^2+12n=0 equation:


Simplifying
3n3 + 8n2 + 12n = 0

Reorder the terms:
12n + 8n2 + 3n3 = 0

Solving
12n + 8n2 + 3n3 = 0

Solving for variable 'n'.

Factor out the Greatest Common Factor (GCF), 'n'.
n(12 + 8n + 3n2) = 0

Subproblem 1

Set the factor 'n' equal to zero and attempt to solve: Simplifying n = 0 Solving n = 0 Move all terms containing n to the left, all other terms to the right. Simplifying n = 0

Subproblem 2

Set the factor '(12 + 8n + 3n2)' equal to zero and attempt to solve: Simplifying 12 + 8n + 3n2 = 0 Solving 12 + 8n + 3n2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 4 + 2.666666667n + n2 = 0 Move the constant term to the right: Add '-4' to each side of the equation. 4 + 2.666666667n + -4 + n2 = 0 + -4 Reorder the terms: 4 + -4 + 2.666666667n + n2 = 0 + -4 Combine like terms: 4 + -4 = 0 0 + 2.666666667n + n2 = 0 + -4 2.666666667n + n2 = 0 + -4 Combine like terms: 0 + -4 = -4 2.666666667n + n2 = -4 The n term is 2.666666667n. Take half its coefficient (1.333333334). Square it (1.777777780) and add it to both sides. Add '1.777777780' to each side of the equation. 2.666666667n + 1.777777780 + n2 = -4 + 1.777777780 Reorder the terms: 1.777777780 + 2.666666667n + n2 = -4 + 1.777777780 Combine like terms: -4 + 1.777777780 = -2.22222222 1.777777780 + 2.666666667n + n2 = -2.22222222 Factor a perfect square on the left side: (n + 1.333333334)(n + 1.333333334) = -2.22222222 Can't calculate square root of the right side. The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Solution

n = {0}

See similar equations:

| 25x+-15x+20=30x-65+90x | | -3x+1=-10 | | 3k^2+14k+15=0 | | 1/2(2x-6)=1/4(8-12x) | | 4(5x+5)=-45+5 | | 5y^2+2y+18=0 | | 3x*8/12x= | | 3x-10=-x-s | | 4y^2+6y= | | -7c=-112 | | 7x+4x=28 | | 5(x+2)=4x+2 | | 16p=-11 | | (n^2)-4n+5=8 | | 16p=11 | | -2x^2-12x-9=0 | | 4x^2+2c+6x=0 | | x-11/3=9/23 | | 5(7-x)+11= | | 21+3x=3x+k | | 2x-100=x | | 36w=144 | | X=4.5+2.5y | | -2x-12x-9=0 | | 0.85*x=90 | | -7(3x-2y+6)= | | (n^2)-4n+57=-5 | | x/2=27 | | 5z-4.1+3.9z-0.4z-1= | | ut12/-4=5 | | -32x+16x=4(-7-5x) | | 7(5m+1)= |

Equations solver categories